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Abstract

In this paper, we study how to image both the location and the shape of extended targets using the response matrix
obtained from inter-element response of an active array of transducers. In particular, the time reversal technique is used
for efficient initial localization of the target and the level set method is used for shape reconstruction. We then show how
to couple the location estimation and shape reconstruction in a complementary way to improve accuracy for range
estimation. Resolution analysis for active arrays in remote sensing regime is also presented. We illustrate with numerical
experiments which show that the method is capable of imaging objects with complicated shapes and that the method is
robust with respect to noisy data.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Active arrays of transducers that can send out signals and record reflected and/or transmitted signals are
used in many applications such as medical imaging, non-destructive testing, seismic imaging, and target
detection/recognition for sonar or radar systems. Such an active array can be used to probe a medium by
sending out waves to illuminate reflective targets. Information about the targets can be extracted from the
reflected and/or transmitted signals. In particular, the response matrix of an active array can be formed by
recording the inter-element response, i.e., the response received at one transducer corresponding to an
impulse sent out from another transducer. The product of the response matrix and its adjoint corresponds
to the time reversal operator. The operator and its eigenvalues and eigenvectors have been studied ex-
tensively. For point scatterers it can be shown that the eigenspace of the time reversal operator is spanned
by the illumination vectors, which are the wavefields at the array corresponding to a point source at one of
the scatterers [7,16,18,19]. If the point scatterers are well separated, then there is a one-to-one
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correspondence between the eigenstates of the time reversal operator and the illumination vectors. These
relations have been explored to focus a wavefield on selected targets using iterated time reversal, called
D.O.R.T [16,18]. The iterated time reversal procedure corresponds to the power method for finding the
leading eigenvalues and eigenvectors for the time reversal operator. This relation was used for the M Utiple
SlIgnal Classification (MUSIC) algorithm for imaging locations of a set of point scatterers in [7,10,12,17],
where the singular value decomposition (SVD) of the response matrix was used to find the eigenstates. The
locations of well-separated scatterers can be found by matching the illumination vector of a searching point
in the imaging space to the eigenstates. In this process the Green’s function for the medium is used to
construct the illumination vector for an arbitrary search point. However, the Green’s function is unknown
in general and has to be approximated in practice. Statistical stable imaging function were designed in [1]
for point targets in a weakly inhomogeneous medium. There, a homogeneous Green’s function was used,
but statistical stability was achieved by time averaging from different frequencies in a broadband signal.
This averaging means that incoherent parts of the measurements that comes from small scale medium
heterogeneities are suppressed, thus giving a stabilized signal. They moreover obtain enhanced estimation
of the range, the distance to the target, by explicitly using arrival time information. Recently in [2], this
approach was extended to an algorithm that images the reflectivity function based on Born approximation
and time reversal. It is shown that if the homogeneous Green’s function is used to approximate the real
Green’s function for imaging in a weakly random medium, then the imaged reflectivity field is the true
reflectivity function convolved with a Gaussian kernel which depends on the statistical property of the
medium.

However, most of the studies above are mainly focused on point scatterers and their locations. The
geometry of extended targets, scatterers with finite size that is comparable with wavelength, is not involved.
In many applications, such as target identification, geometry plays a crucial role. For extended targets, the
eigenstates of response matrix and hence the time reversal operator becomes more complicated. For ex-
ample, it was shown in [5] that compressibility contrast and density contrast can generate different wave-
fields and hence multiple eigenstates even for a small spherical scatterer. The analysis was also extended to
an arbitrary scatterer of finite size in [4], whereas the number of significant eigenstates for a finite aperture
array is analyzed in [23]. Our starting point is the approach taken in [24], where the leading eigenstates and
eigenvalues of the time reversal operator are used to characterize both the location and the dimensions of
an extended target in the remote sensing regime. The result presented shows that the dominant eigenstate in
the extended scatterer case also corresponds to the location of the target. As a consequence the techniques
used for imaging point scatterers can still be applied to localize extended targets. Here, we continue this line
of work by designing an algorithm that image both the location and the shape of an extended target(s)
using the response matrix in the remote sensing regime. If we cast the problem in the standard inverse
problem framework, we need to construct a functional that depends on both the location and the shape of
the extended target. The process of carrying out these tasks simultaneously becomes ill-conditioned in the
sense that optimization in spatial location and shape space are very different objectives, the spatial di-
mension is at most three whereas the shape space has an infinite dimension. Moreover, the inter-element
response measurement is approximately an oscillatory integral on the support of the target. Without a good
estimate of the location the shape estimation can be completely wrong due to the incorrect phase. The main
goal of this paper is to illustrate the complications due to this coupling and the importance of decoupling at
the initial stage using a relative simple setup. An important aspect of our approach is therefore an explicit
strategy for partly separating, and then combining, the two tasks. In this paper, only a single frequency is
used for the imaging algorithm. In future reports we will study the efficient use of different frequencies
especially when the medium is inhomogeneous.

In this paper, we first show that if the location is known, then the shape estimation can be done efficiently
and robustly from the response matrix using the level set method. In particular, the level set method allows
us to find targets with complicated geometry and topology easily. We also provide a resolution analysis for
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our algorithm which is verified by our numerical simulations. To localize the target(s), we first develop a
multi-resolution imaging algorithm using the singular value decomposition of the response matrix. How-
ever, in the remote sensing regime, the location estimate, especially the range information, may not be very
accurate when array aperture is small and/or target geometry is complicated. Here, we show that shape
estimation can be used to improve location estimation. The key observation is an interesting pattern for the
residual error in the shape optimization at different ranges. The pattern of the residual error after certain
optimization steps has a periodic structure in range that is caused by phase coherence/incoherence which is
analyzed in Section 5. Numerical experiments show that this pattern is robust with respect to noisy data.
Using this pattern combined with an a priori rough location estimate using time reversal techniques, we get
an improved location estimate. The subsequent shape optimization at the more accurate location moreover
produces an improved shape estimate. In the shape estimation we use an elliptical region with center and
dimensions determined by the response matrix as initial guess for the shape of the target. The shape es-
timation is then formulated as an optimization problem. We use the level set formulation to evolve the
shape. To save computational cost, we apply the local level set idea.

The outline of the paper is as follows. First, in Section 2 we describe the experimental set-up, next, in
Section 3 we develop a simple multi-resolution imaging algorithm using the SVD of the response matrix to
obtain an a priori location estimate. Then, we use the response matrix and the level set method to design an
algorithm for shape estimation given the location information in Section 4. We analyze the residual error
pattern for shape optimization at different ranges and use it to improve the location estimate in Section 5.
In Section 6, we provide a resolution analysis and present finally a set of numerical examples in Section 7,
which confirms that the combined approach is capable of identifying complicated shapes and it is robust
with respect to noisy data.

2. Target and measurements

The setup of an active array and a target is illustrated in Fig. 1. The active transducer array is shown to
the left and the planar target whose location and shape we want to estimate is shown to the right. Define the
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Fig. 1. The transducer of the active array is shown to the left in the plot. The target is at the range distance L.
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inter-element response Py(¢) to be the reflected signal at jth transducer corresponding to an impulse sent out
from ith transducer. For an array consisting of N transducers, the matrix P(¢) = [P;(¢)]y.y is called the
response matrix. If the medium is static we have P;(¢) = P;(¢) due to spatial reciprocity. If we assume that
the medium and the array response is linear, for an output signal &(r) = [e;(¢), e2(1), .. ., ex(£)]", where e;(¢)
is the output signal at ith transducer and T means transpose, the reflected signal at the array is

#(1) = [ (1), (1), ..., ry(0)]" = P(2) % €().

Here, * denotes convolution in time, therefore, in frequency domain:

where o is the frequency and P(w) is the Fourier transform of P(¢). In this paper, the measurements that we
use to estimate the target location and shape is this response matrix P at a single frequency.

We denote by G(&,x) the Green’s function of the medium for frequency , which represents the
wavefield at x for a point source located at £ Due to the spatial reciprocity, G(x, &) = G(&, x). Observe
that we will consider the case with time harmonic measurements and suppress the dependence on w. To
simplify the analysis, we assume that each transducer of the active array can be viewed as a point source
and the target is a perfect reflector with a normal reflectivity that is equal to unity. In this case the reflected
field can be represented as an integral over the illuminated surface. Hence, the response matrix can be
written as

Py() = / G(&, x)G(&, x)e(x: &, &) dx, 2.1)

where Q is the part of the surface that can be illuminated by the active array and ©(x; ;, ;) is a reflectivity
kernel that depends on the incidence and outgoing angle, i.e., the angle between the normal of the surface at
x and the vectors &; — x and &; — x, respectively.

In remote sensing applications, such as target detections using sonar or radar system, the distance be-
tween the target and the active array is much larger than the wavelength and the size of the target and also
the size of the array. In this case the wave from a transducer is almost planar when it reaches the target.
Furthermore, we assume that from the point of view of the active array the target is planar which is parallel
to the array surface. We are primarily interested in the remote sensing regime and we can therefore neglect
the reflectivity kernel and approximate the response matrix by

%®=LG@ﬂaqu, (2.2)

which thus defines our modeling of the medium response.

3. A priori location estimate

The first step in our imaging procedure consists in finding an initial estimate for the location of the
target. We use the response matrix, denoted by P as above, of an active array to image the target. We define
the vector g(x) = [G(&,,x),...,G(&y,x)]" to be the illumination vector. It is the wavefield at the array of
transducers corresponding to a point source at a point x. The first eigenvector #; of P for an extended target
is approximately aligned with the illumination vector of the center of target x = o in the remote sensing
regime [24]. We normalize ¥, (as Matlab does) so that ||7;|| = 1. We construct the following imaging
function as in [7]:
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where x is a search point and the bar means complex conjugate. The maximum of this imaging function
gives a good lateral location estimate, but typically does not give satisfactory range estimate since the phase
variation of the illumination vector across the array is not very sensitive to changes in the range especially
in the remote sensing regime. The range estimate can be improved by using arrival time information and
using more than one arrays. For weakly inhomogeneous medium, different imaging functions and their
statistical stability were studied in [1].

In our numerical experiments, we use MATLAB to compute the singular value decomposition of the
response matrix and get the leading eigenvector. Then, we construct the imaging function (3.1) using the
homogeneous Green’s function for g(x). We use two or three arrays and construct the imaging function as
the product of these two or three ones. The maximum of the imaging function gives the a priori location
estimate. A large offset in between the arrays improves the location estimate in all three spatial coordinates.
The computation of the imaging function and searching for its maximum in a large region can be quite
expensive. We briefly mention the idea of multi-resolution that was used to speed up the numerical
searching process. First, in a large search box, we use a relatively coarse grid, which however is fine enough
to capture the peak of the imaging function. Then one narrow the search box down to a neighborhood of
the peak and repeat the process with a finer grid and so on.

f(x) (3.1)

4. Imaging target shape

In this section, we discuss the shape estimate of extended targets using the response matrix. Here, we
assume that the distance in between the array and the target plane L is given, i.e., x = (L, y,z). We want to
find a region ©, in the target plane that minimizes the following imaging functional:

F(Q) = ||P(Q) — P™|z =D (P(Q) — P™), (4.1)

ij=1

where P is the measured response matrix and P(Q) is defined as in (2.2). Q, is then taken as the shape
estimate of the real target.

By calculating the shape derivative, i.e., the first variation of F in terms of a perturbation of 0Q, the
normal velocity at the boundary x € 0Q2 according to gradient descent is

va(x) = = D _[(P)(Q) = B*)G(&, x)G(&;, x) + (P (Q) — F™)G(&, x)G(8, %)) (4.2)

ij=1

We could also add a weighted length term for the boundary 0Q2 (area term in the case of a surface) as a
regularization term if needed, i.e., minimize

F(Q) = |P(Q) = P™||. +y[o2),

where y is an appropriate choice of weight that may depend on the signal to noise ratio. Then, there will be
a scaled curvature term in the normal velocity which will penalize against oscillations due to noise or
numerical ill-posedness:

n

on(x) = = D _[(Py(Q) = P*)G(&, x)G(&), x) + (Py(Q) — Py™)G(&,, x)G(&, x)] = 7,

ij=1
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where k is the mean curvature. However, we find that our shape imaging technique works well without this
regularization term and do not include it below.

Numerically we use the level set method to evolve an initial shape according to the above normal velocity
to optimize the shape approximation. Recently, the level set method has been successfully used for shape
evolution in optimal design and inverse problems [3,8,9,11,14,20]. The main advantage of the level set
method is that one does not need to assume any a priori knowledge of the final shape. The level set method
can deal with complicated geometry and topological changes easily. Let ¢ be the level set function whose
zero level set represents the shape of the target, i.e.,

Q= {x[¢(x) <0}, Q= {x[¢(x)=0}.

The level set method turns the geometric problem of shape evolution into a time dependent partial dif-
ferential equation:

¢+ oa|Ve| =0, (4.3)

where ¢ is just a pseudo-time in the optimization process and ¢ = 0 at time ¢ represents the shape at time ¢.

The numerical experiments we will present demonstrate that the optimization process is quite robust
with respect to the initial guess. The normal velocity v, at the boundary 0Q defined by (4.2) is extended to
all x, we can solve the level set Eq. (4.3) using well-developed numerical schemes for Hamilton—Jacobi
equations [13,21]. However, the main issue here is the computational cost. The main cost in the optimi-
zation process is to compute v, according to (4.2), which requires to compute each element of the response
matrix P;(Q) defined by the integral (2.2) for current shape Q. This can be very costly if the array is large
and we need to compute v, (x) at all x. Here, we use the local level set method [15] so that we only calculate
v, within a narrow band near the zero level set and only update ¢ in the narrow band, see Fig. 2. Moreover,
to evaluate the response matrix of the updated shape, we just need to form the response matrix of the
symmetric difference between the old and updated shapes and then add that to the old response matrix.
Here is the algorithm which we use to compute/update the response matrix for a shape given by the level set

wider band in which the level
set function is reinitialized to
be close to a signed
distance function

narrow band in which
the velocity is calculated
and the level set function
is updated

Fig. 2. The figure illustrates the local level set approach, only a band in the neighborhood of the boundary needs to be considered.
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function ¢. With a rectangular grid on the target plane, we classify all grid cells into three types: (1) interior
cells: those cells whose four vertices have negative ¢ values; (2) exterior cells: those cells whose four vertices
have positive ¢ values; (3) boundary cells: those cells whose four vertices have different signs of ¢. The
response matrix is the sum of contributions from the interior cells and the boundary cells. The contribution
from an interior cell to P;(£2) is simply the multiplication of the cell area with G(&;, x)G(&;, x), where x is the
center of the cell. To compute the contribution of a boundary cell, we construct a straight line approxi-
mation of the boundary 02 and divide the cell into two regions, one that corresponds to ¢ < 0, the other
that corresponds to ¢ > 0. The area and center of mass of the region corresponding to ¢ < 0 can be easily
calculated. The contribution from this boundary cell is the multiplication of the area of the region for ¢p < 0
and G(&;, x)G(&;, x), where x is the center of mass of the region for ¢ < 0. Note that the response matrix of
the whole region ¢ < 0 is the sum of all these contributions. The response matrix of the symmetric dif-
ference mentioned above could be calculated cheaply by only considering those squares in which the area or
center of mass of the region ¢ < 0 changes when ¢ is updated. We next summarize this procedure.

4.1. Numerical algorithm

1. Initialize the level set function ¢.

2. Compute the response matrix of the initial shape.

. At each grid point in a narrow band near the zero level set, compute the normal velocity v, according to
4.2).

. Solve the level set PDE (4.3).

. Reinitialize ¢ to be close to a signed distance function in a wider band.

. Update the response matrix by comparing the old and new level set functions.

. Go to step 3 until the required number of iterations is reached or the residue error is small enough.
Simple upwind ENO/WENO schemes are used for the level set Eq. (4.3). To speed up the optimization

process while satisfying the CFL condition for stability, we choose the time step At = {C}/{max, v,(x)},

where 0 < C < 1is a constant. For our numerical examples we take C = 0.3. For the reinitialization, we use

the time marching scheme [22]

¢, + sign(¢o) (V| — 1) =0,

where ¢, = ¢(0), sign(¢,) is the sign function which is 1 if ¢, > 0, —1 if ¢, < 0, and 0 if ¢, = 0. More
details about the finite difference schemes and the numerical sign function can be found in [15].

w

~N N L B

5. A posteriori location estimate

If the exact range L is used for the initial guess in the shape estimate, then the algorithm in the previous
section is very robust and gives very good results in our test cases. If the initial cross range estimate is not
very good, we need a large computational domain in the target plane and more time steps to move the
initial shape to the correct location and find a good fit. Thus, the computational cost increases with a poor
lateral location estimate, but we still get a good final shape estimate.

For a general approach, the critical issue is how to move and deform the trial shape to get a good
approximation. In our setup, we can cast the problem in the following formulation: find the range L and the
planar shape Q € R?> which minimizes

F(L,Q) = ||P(L, Q) = P™| = > (Py(L, Q) — BI™)’, (5.1)

ij=1
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where  is in the plane that is parallel to the array and is of distance L from the array, i.e.,
Py(L,Q) = / G(&,x)G(E;,x)dx, x=(L,y,2).
Q

Although shape estimate will reveal more detailed geometric information about the target, shape de-
formation is more expensive than localizing the target since the shape space is infinite. Moreover,
without good range information shape optimization may be completely wrong due to the phase in-
coherence as will be shown below. That is why it is crucial to have a good range estimate with minimal
shape dependence. Thus, we first use the time reversal technique to localize the target. After the lo-
cation of the target is known approximately we need to couple the optimization in shape and location
to get more accurate information. A straightforward way is to follow the gradient descent direction
in both L and Q for the energy functional (5.1). The shape derivative with respect to Q is the same as
in (4.2). The derivative in L is

n X 0 iy X
W - 2Re{ Z [(P,,(L, Q) — P™) /Q %G(ﬁ,,ﬂ + G(ém)% dx] }

ij=1

If we alternatively optimize in L and in Q, i.e., every time step we optimize in L for a fixed trial shape Q
using the above formula and then update Q with current L using the normal velocity (4.2), or vice versa, this
optimization does not converge in general. Intuitively, one might expect similar robust behavior in
the range direction as in the lateral direction. However, this is not the case. In the remote sensing regime,
the distance between the target and the array is mainly determined by the range L. Hence, phase infor-
mation at the transducer array is most sensitive to the change in L. Due to the periodic structure of phase
coherence and incoherence in the range as explained below, there will be many local minimas. Moreover,
we find a very robust pseudo-periodic structure for the residue error E(L) = ming || Py — P(L, Q)||fp in L.
We show this pattern in Figs. 11-15. In our experiments, we only do a certain number of iterations for the
optimization at each fixed L and plot the residue error in L. E(L) has peaks and valleys and the pseudo-
period is almost exactly half wavelength, 1/2, in our experiments. In each period, from one-fourth to three-
fourths of the period, the residual is a constant, which is the largest residual in the period. If we plot the
area of the optimized shape as a function of L instead, the same pseudo-periodic pattern is seen and the area
is zero from one-fourth to three-fourths of each period, corresponding to the intervals with the largest
residual.

Here, we give a simple explanation of this pattern.

Recall that the elements P; of the response matrix is the integral of the product of two Green’s functions.
The 3D homogeneous Green’s function is

eik‘x*."‘

Gx,y) = ———.
(x,5) yr—

Assume L is the true range and is much larger than the aperture a, the size of the target and the center offset
of the target. Denote L to be an approximate range. In this regime, we have:
Q2ikL e2ikL

(4nL)® 2 (4nl)’ |

|Pitjrue — Py ~ ||Qurue|

First, if L —L =nA/2 =nn/k, where n is an integer, then by choosing |Q| = |Qu.|L?/L?, we have
|P*® — Py| ~ 0. Thus, there are local minima of residuals with the spacing equals almost exactly 4/2, this is
confirmed in Section 7. Moreover, the area of the shape corresponding to these local minima is a quadratic
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function in L, which will also be confirmed in Section 7. Next, let 0= (4n/2)(L —L)=2k(L-1L). If
2nm < 0 < 2nm + (n/2) or 2nm + (3n/2) < 0 < 2nm + 2x, then for |Q| = (L?/L?)|Quue| cos 6 > 0, we have

2ikL ikl 2ikL

e p—
(4nL)?

€
(4nL)’

sin 0 e
= |~Qtrue| | | " lrue‘

(4nL)? (4nL)*

€]

’ |Qtrue|

This means that there is a non-vanishing “optimal shape” in this case. The left part of Fig. 3 shows
the geometric explanation for the above algebraic calculation. Finally, assume that
2nn + (1/2) < 0 < 2nm + (31/2), then there does not exist a positive |Q| such that

eZlkL eZlkL 2ikL

2 |Q‘ 212 °
(4nL) (4nL)

(4nL)?

)

’ | true| ’ |Qtrue|

since obviously the left-hand side is the length of the side corresponding to an angle larger than or equal to
7/2 in a triangle while the right-hand side is the length of another side of the same triangle, see the right part
of Fig. 3. Thus, the the optimal shape at L is an empty set.

We can use this observation to improve the range estimation. The crucial point is that we do not really
need precise shape information for this pattern. The shape we get at each L may be completely irrelevant.
However, it is the shape optimization process and the residual error that will feed back into the range
estimate and provide useful information. Assume an a priori range estimate L is obtained from the imaging
function discussed in Section 3. Since the pseudo-period is //2, there will be a local minimum of the residual
over [L, L + (7/2)]. We can use a fine grid in the range direction for this one period, run a certain number of
iterations for the shape optimization at each grid node and find this minimum L;. Then, we carry out the
shape estimation at depths L; + (nA/2) (with » an integer) and identify the depth with minimum residual.
We expect it to be a very good estimate of the range with sub-wavelength accuracy, numerical experiments
support this. The final shape estimate is the one associated with this a posteriori range estimate.

Although the pattern of the residue error is quite robust as is shown in our numerical experiments, when
the shape is complicated or when there is noise, there is no way to guarantee that the global minimum
occurs at the exact range L. To further improve the range estimate, we can use two or more frequencies to
correlate more accurate range. For example, we can use two frequencies whose wavelengths are 4, and 4,,
respectively. Let L be the rough estimated range. Then, we use a fine grid to find the local minimums of
residual using these two different frequencies in [L,L + (4,/2)] and [L,L + (J2/2)], respectively. We call
them L, and L,. Then, we minimize |L; + m(4,/2) — L, — n(42/2)| for integers m, n with small absolute
value. The minimum should then occur when L, + mi, = L, + ni, = L. If the ratio A,/4, cannot be rep-
resented using a fraction with both numerator and denominator small, this should give a unique minimum.
We use numerical examples in Section 7 to illustrate this idea.

w
aw w

Fig. 3. Minimization of ||# — aw|| with respect to non-negative . When @ and w form an acute angle (left figure), then the optimal a is
positive, otherwise (right figure) the optimal a = 0.
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6. Resolution analysis

We discussed estimation of range L in the previous section and found that in the case with a homoge-
neous background we can obtain sub-wavelength accuracy by making use of the periodicity in the residue
error. We illustrate this with numerical examples in the following section. Here, we discuss lateral reso-
lution. According to Rayleigh’s criteria in optics, the smallest distance between two far object that a
telescope can resolve is given by d = (1/1.22)(AL/a), where the number 1.22 comes from the zero of a Bessel
function. Analogously, we now study the smallest lateral distance between two objects that our array can
resolve. To illustrate, we set up an experiment in which the targets are two circles with radius 0.5 m which
are separated by 0.2 m. We use different A, L, and a to test whether our algorithm can split the two target
starting with an initial guess of a connected elliptical region. The results which we document in more detail
in the following section show that 0.2m = d > C,(AL/a) is the essential criterion. In addition to this, there is
another requirement in order to get the right shape: the spacing between transducers da must not exceed
certain constant C, times /L, otherwise the reflected wave is poorly sampled. Combining the two re-
quirements above, we can adjust the parameters so that the true shape of target can be detected using the
least number of transducers.

Now, we give a derivation for the above observations. We follow the notations in [2]. The time reversal
point-spread function in homogeneous media is I';® (5 ¢) = (1/2r) [*7 3% (3% w)e ™ dw; where

N b
. ) = el 7
RGeS w) =F(w) Y

2 ’
v (41)7|x, — yllx, — »*|

where x, = ph/2 and h = a/N is two times the spacing da between transducers, y is the source point and )* is
the search point.

In the remote sensing limit with (a < L), we can use the parabolic approximation
el — k(L2 x)' 7 o Gik(L+(x3/2L)) (6.1)

Similarly,

(‘f - xp)z )

s 02
|xp_y‘:[L2+(é_xp)]/ ~L+ o7

Using this approximation, we have

/ N
FIR (5 ) f (W)2 Ck(E/2D) 3 D),
(4nL) et

Since x, = ph/2, we have the geometric sum

ikNhE ik(N+1)hé X K(N+bne
S5 canin _OPUT en{ -} (%)
p=—N 1 — e—(ikne/21) sin (%)
Let
2L -

Then, ¢ ~ (AL/a), since a = Nh and 1 = 2n/k.
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This justifies our observation that the criteria to tell one target from the other is, the separation distance
must be greater than a constant times AL/a.

Furthermore, the period of the denominator must be much larger than the period of the numerator
otherwise the peaks will be so close to each other that when convolved with two pulses, there is no sep-
aration in the result. This requires N > 2 approximately.

Assume next that we are not so deeply into the remote sensing regime. One must still resolve the phase
variation in I’ o X, moreover, the analysis assumes that we are in the parabolic regime with respect to the
sampling interval da. The parabolic approximation (6.1) requires essentially

kx2

TLI < Cgﬂf7

for some constant C,, which gives the sampling criterion 4 < 2C,v/ AL or da < Cyv/ AL, where v AL is the
Fresnel length. With this criterion, we obtain wavelength accuracy in the near field and the Rayleigh
resolution in the remote sensing regime as illustrated in the following section.

7. Numerical experiments

In this section, we show numerical experiments to illustrate the performance of the imaging pro-
cedure described above. In Section 7.1, we calculate the a priori location estimate, which also gives us
an initial guess. In Section 7.2, we use the exact range and almost no offset in transversal direction to
assess the performance of the shape estimation procedure. As discussed above the level set method is
used to minimize the residual and find the shape of the target(s). In Section 7.3, we provide experiments
to show how the shape estimation algorithm can be used to help improving the location estimate and
obtain sub-wavelength accuracy. Finally, in Section 7.4, we provide experiments to illustrate resolution
issues.

7.1. A priori location estimate

We let the target be located in the (y,z)-plane. The exact range in our experiments is 500m. The
wavenumber used is 4m. To obtain the a priori location guess we use the search box
300m < x < 700m, —100m < y < 100m, —100m < z < 100m. We use three groups of arrays of transducers
to search for the location of the target(s). The centers of the arrays are at (0,y1,z), (0,)2,2), and (0,3,z3),
where y; = —y, = 100m, y; =0, z; =z, =0, z3 = 170m. The aperture of each group of the two-dimen-
sional arrays is a = 15m.

In practice the response matrices are formed by physical experiments. In our numerical examples, we
form them numerically by using the homogeneous Green’s function and discretizing the integral in (2.2)
over the target(s). We apply the multi-resolution procedure to search for the location of the target(s). First,
we use a coarse grid s, = h, = h., = 4m to search for the approximated location of the target(s). The im-
aging function is the product of the three imaging functions (as in (3.1)) corresponding to the three response
matrices of the three groups of arrays of transducers. For the target with a “happy face” shape (shown in
Fig. 5), the sharp maximum occurs at x = 512m, y =0, z = —4m.

Next, we use a fine grid i, = h, = h, = 0.2m in a small search box (512 — 10)m < x < (512 + 10)m,
—5m <y <5m,(—4 — 5)m <z < (—4 + 5)m, which is the neighborhood of the approximate center. The
new maximum occurs at x = 505.2m, y =0, z= —2.2m.

We observe similar behaviors for other configurations, too.
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7.2. Shape estimate

In this section, we use the exact range L and minimize the functional (4.1) using the level set method for
shape estimation described in Section 4. We want to see in the ideal situation how well the shape can be
estimated and will discuss resolution issue and how to handle more general situations later.

We let L = 500m, k = 20m, and a grid size # = 0.1m on the target plane. The square array consists of 5-
by-5 transducers with a aperture a = 50m. The target has a shape with four leaves » = 1 + 0.5cos(40). The
initial guess is chosen to be a circle with the same center as the target. Fig. 4 shows the initial guess, the true
solution and the numerical solution after 200 iterations. The result is very good, the complex geometry can
be identified.

We keep the setup unchanged and let the target be a multiple connected region that looks like a happy
face. This complicated shape can be represented cleanly as the max/min of several simple level set functions.
We start with an elliptical initial guess, which is simply connected. Clearly topological changes have to
happen during the iterations if the true shape could be found. We do observe topological changes and these
are automatically taken care of due to the nice feature of the level set formulation. Fig. 5 shows the true
solution and the very precise numerical approximation after 200 iterations.

The holes are not generated away from the interface, since we used the local level set method which only
changes the level set function near the interface. Instead, they are generated by a series of changes of
curvature and concavity, as well as splitting and merging. The middle step(after 110 iterations) is shown in
Fig. 6. Note that the curvature and concavity have changed from the initial guess(an ellipse) but the to-
pology has not yet changed. During the next 90 iterations topological changes will happen, that is, merging
and splitting will occur.

Next, we consider multiple targets. In our setup the multiple targets are in the same plane that is parallel
to the array of transducers. Also the aperture of the array is small compared to the range. Hence, only those
reflected/scattered waves that are traveling mainly along the range direction will be received by the array.
That is why we neglect multiple scattering among the targets. We use three targets that resembles the letters
“HOU”. Again they can be represented by the max/min of simple level set functions. In order to capture the
fine features we change our setup as follows: L = 500m, a = 20m, k = 100w, 2 = 0.1m. We use 6-by-6
transducer array. We increase the wavenumber to resolve the small gaps between the three letters, which is

Fig. 4. Simply connected target with the shape of four leaves.
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Fig. 5. Multiple connected target.

-0.5

Fig. 6. Multiple connected target, middle step.

explained in the resolution analysis section. Again we use an elliptical initial guess and complicated to-
pological changes occur to capture the true shape. Fig. 7 shows the true solution and the numerical solution
after 250 iterations. The result is very good as our grid is relatively coarse with # = 0.1m, which barely
resolve the true shape.

Now we consider the shape estimate using noisy data. For each element of the true response matrix, we
add a random phase angle with uniform distribution in [—0.14r,0.147]. Then, we add a random magnitude
multiple with uniform distribution in [0.96,1.04]. Fig. 8 shows the true solution and the good numerical
approximation after 200 iterations. The result is stable with respect to different realizations.

In the above experiments, we obtained good results in the ideal situation using the exact range L and an
almost exact cross range estimate. Now we still use the exact range L but use a cross range estimate which is
not perfect. The numerical result in the location estimate section gave a location error of 2.2m in the cross
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Fig. 8. Shape estimate using noisy data.

range. Now we use an elliptical initial guess with offset 2.2m and see if we could find the location and shape
of the target.

Fig. 9 shows the initial guess with offset, the true solution and the numerical solution after 200 iterations.
Since there is a shift, we use a larger calculation domain. The additional cost is not significant since we use
the local level set technique. As we can see from this figure, the result is good and the numerical ap-
proximation cannot be differentiated much from the curve for the exact solution.

With a larger shift, with no overlap between the initial guess and the true solution, such a good result can
still be achieved, but the procedure requires more iterations in the optimization process for both moving
and deforming the initial shape for a good fit. One way to accelerate the process is to apply the idea in [6] in
which a set of small circles around the estimated center is used as the initial guess. If some of the circles fall
into the position of the target, they will develop into the target and other small circles will vanish. Fig. 10
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Fig. 9. Face shape target, a shifted ellipse as the initial guess.
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Fig. 10. Face shape target, 25 small circles as the initial guess.

shows the result with 25 small circles as the initial guess. The radius of the small circles is as small as the grid
size. This makes each early iteration very fast since we use the local level set technique and only compute the
points near the boundary. After 700 iterations the numerical solution is almost identical with the true
solution.

7.3. Coupling the shape and location estimates
In this section we consider more general situations in which the range information is only approximately

known. As we discussed in Section 5, the residual (as well as the area) after a certain number (100-200)
iterations should have a pseudo-periodic pattern in the estimated range L.
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We use a circular target with radius 1m. Let L = 500m, a = 50m, A= 5m, h = 0.1m. 5-by-5 transducer
array is used. The initial guess is a circle with radius 1m with no transversal offset but with a wrong range L.
Fig. 11 shows the base 10log of the residual (after 200 iterations) as a function of L. The pseudo-period is
very close to 1/2 = 2.5m. Also in each period, the first 1/8 and the last /8 have values less than certain
constant and in the middle 1/4 part, the value is a constant. This constant part corresponds to the zero area
approximation case and the constant is almost exactly log of the square of the F-norm of the true response
matrix. The global minimum occurs at 502.5m. This is a good estimate for L = 500m. The error is at sub-
wavelength level.

We found above that the local maximums of the area should be approximately a quadratic function of L.
Fig. 12 plots the area of the numerical shape (after 200 iterations) as a function of L. We see the envelope
looks like a quadratic curve, as expected.

To further improve the location estimate, we use A = 0.5m instead. Fig. 13 shows the base 10log of the
residual(after 200 iterations) as a function of L. The pseudo-period is almost exactly /2 = 0.25m. Also in
each period, the first /8 and the last /8 have values less than certain constant and in the middle 1/4 part,
the value is a constant as before. The global minimum occurs at 500m. The error is very small in this case.

We comment that if we use the initial guess with an offset of about one or two meters in transversal
direction, then the result is almost identical to what we have above.

Next, we use a more complicated target: the face. Let L = 500m, a = 50m, A= 0.1lm, h = 0.1m. 5-by-5
transducer array is used. The initial guess is an elliptical shape with almost exact transversal location es-
timate. Fig. 14 shows the base 101log of the residual (after 300 iterations) as a function of L. The pseudo-
period is almost exactly /2 = 0.05m. Also in each period, the first 1/8 and the last 1/8 have values less than
certain constant, and in the middle A/4 part, the value is a constant. The global minimum occurs at
499.95m. The error is 0.05m.

If we use the initial guess with an offset of about 1 or 2 m in transversal direction, the result is shown in
Fig. 15. The pattern is not as clean as before. But the pseudo-period is still /2 = 0.05m. In each period we
have similar behavior for the residual error. However, we no longer see the residual being a constant exactly
in the middle half of each period. The reason is, our analysis in Section 5 assumes the existence of an
optimal shape at each L. But the numerical algorithm is not necessarily able to find the optimal shape.
When we use a circle as the target, it is much easier to find the optimal shape. But when we use the face, a
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Fig. 11. Circular shape target, A = 5m, log of residual as a function of L.
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Fig. 12. Circular shape target, A = 5m, area of the numerical shape as a function of L.
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Fig. 13. Circular shape target, A = 0.5m, log of residual as a function of L.

more complicated target, the optimal shape at L might not be found after hundreds of iterations. However,
even in this case, we get the global minimum at 500m and the error is almost zero.

If the pattern above only holds when the data is exact, then it would be useless in practice. Next, we show
that with noisy data, the pseudo-periodic pattern still remains.

For each element of the true response matrix, we add a random phase angle with uniform distribution in
[-0.14w,0.14n]. Then, we add a random magnitude multiple with uniform distribution in [0.96, 1.04].

We use the same setup as above, with almost no transversal shift. Fig. 16 shows the base 101log of the
residual (after 300 iterations) as a function of L. The pseudo-period is almost exactly //2 = 0.05m. Com-
pared with the exact data case, the differences are, for noisy data the local minimums of residual are not as
small as the exact data case. This is reasonable since for the noisy data, even with the exact range, we are
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Fig. 14. Face shape target, 2 = 0.1m, log of residual as a function of L.
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Fig. 15. Face shape target, shifted initial guess, 2 = 0.1m, log of residual as a function of L.

unable to find a shape having the same response matrix as the data and hence the minimal residual is larger
than the case with exact data. Also we no longer have the global minimum as a good estimate of the exact
range. We will show that by using two different frequencies we could recover the range.

When the shape is more complicated or when there is noise, there is no way to guarantee that the global
minimum occurs at the exact range L. Here, we illustrate how to correlate the locations of local minima of
two different frequencies as explained in Section 5. For example, consider the face shape target. The rough
range estimate is L = 505.2m. By using A, =t and /, = 5, we get the local minimums L; = 506.29 and
L, = 507.51. Then, we minimize |L, + m(4,/2) — L, — n(2y/2)| for integers m, n with absolute value less
than 30. The minimum is 0.0031867, which occurs when m = —4 and n = —3. So (L + m, + L, + nk,)/2
= 500.008 is our very accurate a posteriori range estimate. Note that in our choice the ratio 4,/4, = /5.
There is no rational number with denominator less than 35 that have value close to /5 within 0.001.



S. Hou et al. | Journal of Computational Physics 199 (2004) 317-338 335

T |

-12.5

135 I I I I I I I I I )
499.5 499.6 4997 4998 499.9 500 500.1  500.2 500.3 5004  500.5

Fig. 16. Face shape target, noisy data, 2 = 0.1m, log of residual as a function of L.

Therefore, there is no ambiguity when searching for the exact range L since the numerical errors are smaller
than the magnitude of 0.001. Such a range estimate should be good enough to be used to find the shape of
the targets.

7.4. Resolution analysis

We discussed resolution issue in Section 6. Here, we illustrate this with numerical examples to verify the
qualitative results set forth there: The resolution is limited by the Rayleigh criterion value AL/a, moreover,
to achieve this resolution limit we need to obey the sampling criterion: da < Cov/AL.

To illustrate this, let the targets be two circles with radius 0.5m and separation distance 0.2m. Let
L =280m, 2=1/3m. We use only four transducers to image the target, that is, da = a. Then, we need
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Fig. 17. Two circular targets, a = da = 10m, a poor shape estimate due to violation of Rayleigh criterion.



336 S. Hou et al. | Journal of Computational Physics 199 (2004) 317-338

AL/Cyd < a = da < C;V/ AL in order to have a good shape estimate. So, we would expect that for very small
a or very large a, we cannot get a good shape estimate and for ¢ in middle range, we can obtain a satis-

factory shape estimate.

We let a = 10m, then from Fig. 17 we see that after many (hundreds of) iterations the shape we get is two
connected circles. The reason is, a is so small that the Rayleigh criterion inequality is violated.

Choose next a = 40m, then we get again very poor results as shown in Fig. 18. The reason is that da = a
is so large that the sampling resolution criterion is violated.

Next, we let a = 25m. Then, we get a good estimate of the targets, the two criteria are satisfied and the
the two targets are well separated and resolved, see Fig. 19.
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Fig. 18. Two circular targets, a = da = 40m, a poor shape estimate due to violation of the sampling criterion.
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Fig. 19. Two circular targets, @ = da = 25m, we obtain a good estimate and resolve the two circles when both conditions are satisfied.
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Fig. 20. Two circular targets, a = 40m, da = 20m, more transducers allows for larger aperture and a very accurate shape estimate.

Now pick a =40m and da = 20m, that is, we have nine transducers instead of four. With this finer
sampling for the large aperture, we get a very good estimate of the targets, see Fig. 20.

8. Conclusions

We present an imaging algorithm that can estimate both location and shape of extended targets. A key
observation is that the optimization process is very ill-conditioned if these two estimates are coupled to-
gether at the initial stage. We use time reversal techniques to find a good estimate of the location. Then
shape optimization is used to improve the location estimate. The crucial point in our formulation is that it is
not the exact geometry information but the residual pattern in the shape estimate that provides us robust
and useful information for location estimate. When more accurate location information is available, we use
the level set method to find the shape. We use numerical experiments to show efficiency, accuracy, and
robustness of our algorithms.
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